Список задач по функциональному анализу (2003 год).

- 1. Пусть X линейное нормированное пространство. Доказать, что для любых элементов $x, y \in X$ выполняется неравенство $||x|| < \max(||x+y||, ||x-y||)$.
 - 2. Можно ли в пространстве $C^{1}[a,b]$ принять за норму элемента x(t)
- A) $\max_{t \in [a,b]} |x(t)|;$
- B) $\max_{t \in [a,b]} |x'(t)|;$ C) $|x(b) x(a)| + \max_{t \in [a,b]} |x'(t)|;$ D) $|x(a)| + \max_{t \in [a,b]} |x'(t)|;$

- E) $\int\limits_a^b |x(t)|dt+\max_{t\in[a,b]}|x'(t)|?$ 3. Будет ли множество всех многочленов в пространстве C[a,b]
- А) открытым; В) замкнутым?
- 4. Доказать, что всякое конечномерное линейное многообразие в линейной нормированном пространстве есть подпространство.
- 5. Пусть X линейное нормированное пространство. $L\subset X$ линейное многообразие, $L \neq X$. Доказать, что L не содержит никакого шара.
- 6. Образуют ли в пространстве C[-1,1] подпространство следующие множества функций:
- А) монотонные функции; В) четные функции; С) многочлены; D) непрерывные кусочно-линейные функции?
- 7. Образуют ли в пространстве C[-1,1] подпространство следующие множества функций:
- A) многочлены степени $\leq k$; B) непрерывно дифференцируемые функции; (C) непрерывные функции (C) ограниченной вариацией; (C) функции (C), удовлетворяющие условию x(0) = 0?
- 8. Пусть X линейное нормированное пространство, множество $A \subset X$ - фиксировано. Доказать, что $f(x) = \rho(x, A)$ - непрерывное отображение X вR.
- 9. Доказать, что всякое конечномерное линейное нормированное пространство является банаховым.
- 10. Доказать, что подпространство банахова пространства является банаховым пространством.
- 11. Может ли в банаховом пространстве иметь пустое пересечение последовательность непустых замкнутых вложенных множеств?
- 12. Доказать, что в пространстве со скалярным произведением для любых элементов x, y, z имеет место тождество Аполлония: $||z-x||^2 + ||z-y||^2 = \frac{1}{2}||x-y||^2$ $y||^2 + 2||z - \frac{x+y}{2}||^2$.
- 13. Доказать, что для того чтобы элемент x гильбертового пространства H был ортогонален подпространству $L \subset H$, необходимо и достаточно, чтобы для любого элемента $y \in L$ имело место неравенство $||x|| \le ||x-y||$.
- 14. Доказать, что при фиксированном натуральном n множество $M = x \in l_2$, $x = (x_1, x_2, ...): \sum_{k=1}^{n} x_k = 0$ является подпространством пространства l_2 .

Описать такое подпространство N, что $l_2 = M \bigoplus N$.

- 15. В пространстве l_2 рассмотрим последовательность $x_k = (1, \frac{1}{2^k}, \frac{1}{2^{2k}}, \frac{1}{2^{3k}}, \dots), k \in$ N. Доказать, что линейная оболочка этой последовательности всюду плотна в пространстве l_2 .
- 16. Доказать, что следующие операторы являются линейными ограниченными и найти их нормы:
- A) $A: C^{1}[a,b] \to C[a,b], Ax(t) = \frac{dx}{dt};$
- B) $A: L_2[0,1] \to L_2[0,1], Ax(t) = t \int_0^1 x(\tau) d\tau.$
- 17. Пусть X и Y линейные нормированные пространства, $A:X\to Y$ линейный оператор с областью изменения R(A).
- А) Доказать, что R(A) линейное многообразие в Y.
- B) Всегда ли R(A) подпространство в Y?
- 18. Доказать, что в банаховом пространстве X для любого $A \in L(X \to X)$ определены операторы $sin A = \sum\limits_{k=0}^{\infty} \frac{(-1)^k A^{2k+1}}{(2k+1)!}, \, cos A = \sum\limits_{k=0}^{\infty} \frac{(-1)^k A^{2k}}{(2k)!}.$ 19. Пусть X банахово пространство, $A \in L(X \to X)$. Доказать, что $\|e^A\| \leq e^{\|A\|}$. Найти e^I , где I тождественный оператор.
- 20. Рассмотрим оператор $A: C[0,1] \to C[0,1], Ax(t) = \frac{d^2x}{dt^2} + x(t)$ с областью определения D(A) - линейным многообразием дважды непрерывно дифференцируемых функций x(t), удовлетворяющих условиям x(0) = x'(0) = 0. Найти A^{-1} и доказать, что он ограничен.
- 21. Рассмотрим оператор $A: C[0,1] \to C[0,1], Ax(t) = \int_{0}^{t} e^{-|s-t|} x(s) ds.$ Существует ли оператор A^{-1} ?
- 22. Рассмотрим оператор $A: C[0,1] \to C[0,1], Ax(t) = \int_{0}^{t} x(\tau)d\tau + x(t).$ Пусть N(A) - ядро оператора A.
- А) Доказать, что $N(A) = \{0\}$, так что при любом $y \in C[0,1]$ уравнение Ax = y не может иметь более одного решения.
- В) Найти оператор A^{-1} и доказать, что он ограничен.
- 23. Доказать, что оператор $A:C[0,1]\to C[0,1],$ $Ax(t)=x(t)+\int\limits_0^1 e^{s+t}x(s)ds$ имеет ограниченный обратный и найти A^{-1} .
- $24.\ \Pi$ усть X комплексное линейное пространство, f определенный на Х и не равный тождественно нулю линейный функционал. Доказать, что область значений f есть все C.
- 25. Доказать, что следующие функционалы в пространстве C[-1,1] являются линейными непрерывными и найти их нормы:
- A) $f(x) = \langle x, f \rangle = 2[x(1) x(0)];$
- B) $f(x) = \langle x, f \rangle = \int_{-1}^{0} x(t)dt \int_{0}^{1} x(t)dt.$
- 26. Доказать, что следующие функционалы в пространстве C[-1,1] являются линейными непрерывными и найти их нормы:

A)
$$f(x) = \langle x, f \rangle = \sum_{k=1}^{n} \alpha_k x(t_k);$$

B)
$$f(x) = \langle x, f \rangle = \int_{-1}^{1} x(t)dt - x(0),$$

где $\alpha_k \in R, t_k \in [-1, 1].$

27. Будут ли ограничены в пространстве C[0,1] следующие линейные функционалы:

A)
$$\langle x, f \rangle = \int_{0}^{1} x(t^2)dt$$
; B) $\langle x, f \rangle = \lim_{n \to \infty} \int_{0}^{1} x(t^n)dt$?

28. Доказать, что следующие функционалы являются линейными непрерывными и найти их нормы:

A)
$$\langle x, f \rangle = \int_{-1}^{1} tx(t)dt; \ x \in C^{1}[-1, 1]; \ B) \ \langle x, f \rangle = \int_{-1}^{1} tx(t)dt; \ x \in L_{1}[-1, 1].$$

29. Доказать, что функционал $\langle x,f \rangle = \sum\limits_{k=1}^{\infty} \frac{x_k}{k}; \ x = (x_1,x_2,\ldots) \in \ l_1,$ является линейным непрерывным, и найти его норму.

30. Для
$$x(t) \in C[-1,1]$$
 положим $\langle x,f \rangle = \frac{x(-1)+x(1)}{2} + \int\limits_{-1}^{1} tx(t)dt$ Доказать,

что f - ограниченный линейный функционал.

31. Найти сопряженный к оператору $A: L_2[0,1] \to L_2[0,1]$, если

A)
$$Ax(t)=\int\limits_0^t x(\tau)d\tau;$$
 B) $Ax(t)=\int\limits_0^1 tx(s)ds.$ 32. Найти сопряженный к оператору $A:l_2\to l_2,$ если

A)
$$Ax = (x_1, x_2, ..., x_n, 0, 0, ...);$$

B)
$$Ax = (0, x_1, x_2, ...)$$
 при $x = (x_1, x_2, ...)$.

33. Найти сопряженный к оператору $A: l_2 \to l_2$, если

A)
$$Ax = (\lambda_1 x_1, \lambda_2 x_2, ...), \lambda_n \in R; |\lambda_n| \le 1;$$

B)
$$Ax = (x_2, x_3, ...)$$

при $x = (x_1, x_2, ...)$.

34. Какие из следующих операторов $A:C[0,1]\to C[0,1]$ являются вполне непрерывными:

A)
$$Ax(t) = tx(t);$$

B)
$$Ax(t) = \int_{0}^{1} x(\tau)d\tau;$$

C) $Ax(t) = x(0) + tx(1);$

C)
$$Ax(t) = \overset{0}{x}(0) + tx(1)$$

D)
$$Ax(t) = \int_{0}^{1} e^{ts} x(s) ds;$$

E)
$$Ax(t) = x(t^2)$$
?

35. Будет ли вполне непрерывным оператор $A: C[-1,1] \to C[-1,1]$ $Ax(t) = \frac{1}{2}[x(t) + x(-t)]$?

36. При каком условии на функцию $\varphi(t) \in C[0,1]$ оператор $A:C[0,1] \to$ $C[0,1], Ax(t) = \varphi(t)x(t)$ будет вполне непрерывным?

37. Будет ли вполне непрерывным оператор $Ax(t)=rac{dx}{dt},$ если он рассматривается как действующий:

- A) $A: C^1[0,1] \to C[0,1]$; B) $A: C^2[0,1] \to C^1[0,1]$; C) $A: C^2[0,1] \to C[0,1]$?
- 38. Сформулировать критерий компактности в l_p . Какие из следующих операторов $A: l_2 \to l_2$ вполне непрерывны (при $x = (x_1, x_2, \ldots)$):
- А) $Ax=(0,x_1,x_2,...);$ В) $Ax=(x_1,\frac{x_2}{2},\frac{x_3}{3},...);$ С) $Ax=(0,x_1,\frac{x_2}{2},\frac{x_3}{3},...)?$ 39. Доказать, что оператор $A:l_2\to l_2,$ $Ax=(\lambda_1x_1,\lambda_2x_2,...)$ для $x=(\lambda_1x_1,\lambda_2x_2,...)$ $(x_1,x_2,...)\in l_2$, где $\lambda_k\in R,\ k\in N,\ \sup_k|\lambda_k|<\infty$, есть самосопряженный оператор. При каком условии на последовательность λ_k он будет неотрицательным?
- 40. Доказать, что оператор $A: L_2[0,1] \to L_2[0,1], Ax(t) = tx(t)$ есть неотрицательный самосопряженный оператор.
- 41. Доказать, что оператор $A: L_2[0,1] \to L_2[0,1], \ Ax(t) = \int\limits_{0}^{1} e^{s+t} x(s) ds$ является самосопряженным и неотрицательным.
- 42. Пусть $h \in R, h \neq 0$ фиксировано. Доказать, что разностный оператор $A: L_2(-\infty, \infty) \to L_2(-\infty, \infty), Ax(t) = \frac{1}{h} [x(t+\frac{h}{2}) - x(t-\frac{h}{2})]$ удовлетворяет соотношению $A = -A^*$.
- 43. Пусть А самосопряженный оператор, действующий в гильбертовом пространстве H, причем $A \neq 0$. Доказать, что если существует ограниченный оператор A^{-1} , то обратный оператор тоже самосопряжен.
- 44. Пусть A ограниченный самосопряженный оператор, $\lambda \in C$, $Im\lambda \neq 0$. Доказать, что оператор $(A - \lambda \cdot I)^{-1}$ существует.
- 45. Рассмотрим оператор $A: l_2 \to l_2, \ Ax = (0,0,x_3,x_4,...)$ для x = $(x_1, x_2, x_3, ...) \in l_2$. Доказать, что A самосопряжен в l_2 и $A \geq 0$. Найти оператор \sqrt{A} .
- 46. В вещественном линейном пространстве $C[-\pi,\pi]$ найти собственные значения и собственные векторы оператора
- A) Ax(t) = x(-t); B) $Ax(t) = \int_{-\pi}^{\pi} \cos(x+t)x(s)ds$.
- 47. В пространстве C[0,1] рассмотрим оператор Ax(t) = x(0) + tx(1). Найти $\sigma(A)$, $r_{\sigma}(A)$, $R_{\lambda}(A)$.
- 48. Рассмотрим оператор $A:l_2 \rightarrow l_2, \ Ax=(\lambda_1x_1,\lambda_2x_2,...)$ для x= $(x_1,x_2,\ldots)\in l_2$, где $\lambda_n\in C$, $n\in N$, $\sup_n|\lambda_n|<+\infty$. Найти $\sigma(A)$.
- 49. Доказать, что оператор $A: \stackrel{n}{l_2} \to l_2, \ Ax = (0,x_1,\frac{x_2}{2},\frac{x_3}{3},\ldots)$ для $x=(x_1,x_2,\ldots)\in l_2$ вполне непрерывен и найти его спектр.
- 50. Доказать, что оператор $A: L_2[-1,1] \to L_2[-1,1], Ax(t) = \int_{-1}^{1} s^2 t x(t) dt$ вполне непрерывен и найти его спектр.
- 51. Доказать, что оператор $A:L_2[0,1] o L_2[0,1], Ax(t) = \int\limits_0^1 st(1-st)x(t)dt$ вполне непрерывен и найти его спектр.